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Abstract: Many applications, e.g. in control theory and optimization depend on time–
consuming parameter studies of parametrized evolution equations. Reduced basis methods
are an approach to reduce the computation time of numerical simulations for these problems.
The methods have gained popularity for model reduction of different numerical schemes with
remarkable results preferably for scalar and linear problems with affine dependence on the
parameter as in Patera and Rozza (2007). Over the last few years, the framework for the
reduced basis methods has been continuously extended for non–linear discretizations, coupled
problems and arbitrary dependence on the parameter, e.g. Grepl et al. (2007); Drohmann et al.
(2010); Carlberg et al. (2011).
In this presentation, we apply the framework developed in Drohmann et al. (2010) on a problem
that combines all these difficulties. The considered problem models two–phase flow in a porous
medium discretized by the finite volume method like in Michel (2004). The two–phase flow
equation is of interest, e.g. in the context of oil recovery.
For a first test, we concentrate on the development of an efficient reduced basis scheme without
any parametrization. This reduced basis scheme is derived by two model reduction steps from the
high dimensional finite volume scheme. Firstly, a Galerkin projection on the so–called reduced
basis space — a function space spanned by snapshots of the high dimensional solution — is
performed. Secondly, the non–linear operators are approximated by an efficiently computable
empirical interpolant. We shortly introduce the main aspects of the reduced basis method
including the concept of offline/online decomposition, empirical operator interpolation method
and reduced basis generation by greedy algorithms.
The generalized formulation of the presented reduced basis scheme allows for a separation of the
reduced basis space into function spaces for the three physical unknowns — saturation, velocity
and pressure — and the approximation of the non–linear terms. It is discussed, how the coupling
of the unknowns must be reflected in the generated reduced spaces. Furthermore, we compare
the computational complexities of the high–dimensional to the low–dimensional computations
theoretically an by numerical experiments. All the presented experiments are implemented with
our reduced basis software package RBmatlab.

Keywords: Reduced basis method, two–phase flow, finite volume method, empirical operator
interpolation, proper orthogonal decomposition

1. INTRODUCTION

Reduced basis (RB) methods are popular methods for
model order reduction of problems with parametrized
partial differential equations that need to be solved for
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many parameters. Such scenarios might occur in param-
eter studies, optimization, control, inverse problems or
statistical analysis for a given parametrized problem. The
introduction of the parametrization into the model allows
for construction of low–dimensional function spaces —
the so–called RB spaces — which approximate the set
of all admissible solutions. Developing a reduced scheme
by a Galerkin projection onto this space leads to efficient
and reliable reduced simulations. The construction of the
RB space involves high–dimensional computations and
thus needs high computational resources. This gives rise



to the concept of offline/online decomposition separating
the high–dimensional computations (including the basis
generation) in the offline phase from the online phase with
efficient reduced simulations for many parameters.

The method has been applied on different problem classes
with stationary, linear problems with affine dependence
on the parameter on the one end (e.g. Patera and Rozza
(2007); Haasdonk and Ohlberger (2008)) and lately also to
non–linear, non–stationary systems of partial differential
equations on the other end (c.f. Carlberg et al. (2011),
Chaturantabut and Sorensen (2011)). In this presentation,
we also deal with the latter problem class, handling the
model reduction of the function spaces for all physical
unknowns separately. We apply the empirical interpola-
tion and the reduced basis framework as developed in
Drohmann et al. (2010) to a system of two non–linear
coupled partial differential equations modelling two-phase
flow in porous media:

∂ts+∇ · (f(s)u− υ(s)∇s) = q1 in Ω× [0, T ], (1)

∇ · (M(s)∇ψ) = q1 + q2 in Ω× [0, T ], (2)

(u = −M(s)∇ψ) in Ω× [0, T ] (3)

The problem is situated on a bounded domain Ω ⊂ R2

modelling a porous medium, and is given in the so-
called global pressure formulation with unknowns s for
the saturation of the wetting phase, the global pressure ψ
and the total velocity flow u. The global pressure ψ is an
artificial magnitude which is derived from the pressure p
of the wetting fluid and the empirically known capillary
pressure curve pc via

ψ = p+

∫ s

0

f(x)p′c(x)dx. (4)

The model functions f,M, pc : [0, 1] → R characterize
the the fractional flow rate, the mobility rate and the
capillary pressure curve. The last one is closely related to
the diffusion function υ : [0, 1] → R, s 7→ kw(s)f(s)pc(s),
where kw is the relative permeability of the wetting phase.
Furthermore, the source terms are assumed to be of the
form

q1(s) = cq−sq and q2(s) = (1−c)q− (1−s)q (5)

modelling injection or production wells, where c ∈ [0, 1] is
an injection constant.

In order to close the system (1-3), we introduce Neumann
boundary conditions ∇s · n = 0 and ∇ψ · n = 0 on
∂Ω× [0, T ], prescribe an initial saturation s(·, 0) = s0 and
define the global pressure to have zero mean∫

Ω

ψ(x, ·)dx = 0 in Ω× [0, T ], (6)

as it is defined up to a constant only, otherwise. For the
first test of a reduced scheme presented in this work, we
refrain from a parametrization of the problem.

For details on the derivation of the global pressure formula-
tion of two–phase flow problems, we refer to Michel (2004),
which also serves as source for the discretization of the
above equations and the model data used in our numerical
computations. This fully implicit finite volume scheme is
summarized in the next section. We identified two non–
linear operators in the scheme and show in Section 3
how they are empirically interpolated. In Section 4 the
reduced scheme derived by a Galerkin projection onto the

reduced basis scheme and the offline/online decomposition
of this scheme is described. We conclude this proceedings
article with experiments and a discussion on the separate
reduction of the three physical magnitudes.

2. FINITE VOLUME DISCRETIZATION

In this section, we summarize the fully implicit finite
volume scheme from Michel (2004) reformulated in a
notation suitable for the model reduction in the following
sections. First, we introduce an admissible mesh on Ω

consisting of a set of convex control volumes T := {ei}Hi=1,
a family of edges E with σ ⊂ Ω̄ for all σ ∈ E and a

family of control volume centers {xi}Hi=1 with xi ∈ ei for
i = 1, . . . ,H. Further properties of the mesh are:

(1) ∪Hi=1ei = Ω̄,
(2) For any e, f ∈ T with e 6= f , either m(ē∩f̄) = 0 or ē∩

f̄ = σ̄ for a σ ∈ E . The set of neighbouring control vol-
umes is denoted by N (e) :=

{
f ∈ T | m(ē ∩ f̄) 6= 0

}
.

(3) For any cell e ∈ T its boundary is given by a set of
edges E(e) ⊂ E , i.e. ∂e = ∪σ∈E(e)σ̄.

(4) The connection of two points xi, xj is orthogonal to
the edge σij := ēi ∩ ēj and its length is denoted by
dij := |xi − xj |.

Given an admissible mesh on Ω, we define the two Hilbert
spaces WTh and WEh . These spaces comprise functions f :
Ω→ R and f : S → R which are piecewise constant on grid
control volumes and edges of the mesh, respectively. Here,
S := ∪σ∈E σ̄ denotes the mesh skeleton. The spaces are
equipped with the scalar products 〈uh, vh〉WT

h
:=
∫

Ω
uhvh

and 〈uh, vh〉WE
h

:=
∫
S uhvh. As the discrete functions are

piecewise constant, they can be identified by vectors of

degrees of freedom (sh,i)
H
i=1 and (uh,σ)σ∈E for functions

sh ∈ WTh and uh ∈ WEh , respectively. Furthermore, we
define the projection operator PTh : L2(Ω) → WTh by(
PTh [u]

)
i

:= 1
m(ei)

∫
ei
u with m(ei) being the measure of a

control volume ei for i = 1, . . . ,H.

We define two non-linear operators Lsh : WTh × WEh →
WTh , Lu

h : WTh × WTh → WEh and one linear operator

Lψh : WEh → WTh discretizing the equations (1)-(3). The
saturation operator is given by

(Lsh [sh,uh])i =
∑

σ∈E(ei)

gσ(uh, sh)

−
∑

ej∈N (ei)

{υ(sh)}ij
m(σij)

dij
(sh,j − sh,i) (7)

where {·}ij is the harmonic mean on the edge σij and

gσ :WEh ×WTh → R is an upwind finite volume flux

gσij (uh, sh) :=

{
uh,σijf(sh,i) if uh,σij > 0

uh,σijf(sh,j) if uh,σij ≤ 0.
(8)

The velocity operator is defined by

(Lu
h [sh, ψh])σij = {M(sh)}σij

m(σij)

dij
(ψh,j − ψh,i) (9)

and the pressure operator by(
Lψh [uh]

)
i

=
∑

σ∈E(ei)

uh,σ. (10)



Definition 2.1. (High-dimensional scheme). Given a dis-
cretization of the time interval [0, T ] by a sequence of K+1
strictly increasing time instances tk := k∆t, k = 0, · · · ,K
with a global time step size ∆t > 0, we are searching for
discrete solutions ukh := (skh,u

k
h, ψ

k
h) ∈ Wh :=WTh ×WEh ×

WTh . These are computed by an initial projection(
s0
h,u

0
h, ψ

0
h

)
=
(
PTh [s0], 0, 0

)
(11)

and subsequently solving the equation

Lh
[
sk+1
h ,uk+1

h , ψk+1
h

]
= 0 (12)

with the Newton–Raphson method. In each Newton step,
we solve for the defect δk+1,ν+1 in

DLh|uk+1,ν
h

[
δk+1,ν+1

]
= −Lh

[
uk+1,ν
h

]
, (13)

where uk+1,0
h := uk and uk+1,ν+1

h := uk+1,ν
h + δk+1,ν+1

define the updates in each newton step, and the solution at

each time instance tk is given by uk+1
h := u

k+1,νmax(k)
h . The

last Newton step index νkmax equals the smallest integer ν

satisfying
∥∥∥Lh [uk+1,ν+1

h

]∥∥∥ ≤ εNew.

Here, Lh[sk+1
h ,uk+1

h , ψk+1
h ] evaluates to

1

∆t

(
sk+1
h − skh

)
− Lsh

[
sk+1
h ,uk+1

h

]
− PTh [q1]

Lu
h [sk+1

h , ψk+1
h ]− uk+1

h

Lψh [uk+1
h ]− PTh [q1 + q2]∫

Ω

pk+1
h


, (14)

with the row entries corresponding to the discretizations
of equations (1)-(3) and (6).

3. EMPIRICAL OPERATOR INTERPOLATION

For efficient reduced simulations of the above described
numerical scheme, we want to substitute the non–linear
operators Lsh and Lu

h by efficiently computable surrogates.
These so-called empirical operator interpolants will de-
pend on exact operator evaluations in a few interpolation
points from which a global result is interpolated in a linear
function space.

This idea was originally proposed by Barrault et al. (2004)
for discrete functions and extended for general discrete
operators in Haasdonk et al. (2007) and Drohmann et al.
(2010). In this section, we want to summarize the proce-
dure of the latter paper for an arbitrary and parametrized

operator Lh(µ) : Ŵ → W with a parameter µ from
a finite dimensional set of parameter vectors M ⊂ Rp.
Here, Ŵ,W are finite dimensional function spaces. The

spaces Ŵ,W also need to be equipped with a finite el-
ement basis as defined in Ciarlet (1978). That is, they

come with a set Σh := {τi}Hi=1 of linearly independent
functionals, which are unisolvent, i.e. there exist unique
functions ψi ∈ W, i = 1, . . . ,H satisfying

τj(ψi) = δij , 1 ≤ j ≤ H.
The linear functionals τi, i = 1, . . . ,H are called the
degrees of freedom (DOFs) of the discrete function space
W and the functions ψi, i = 1, . . . ,H are called basis
functions. Note, that the finite volume spaceWTh and also
the function space WEh both have such a Ciarlet basis,

where the DOFs are given by evaluations in the control
volume centers or the edge midpoints, respectively.

Now, the empirical operator interpolation method can
briefly be expressed based on a set of interpolation DOFs
ΣM := {τEIm }Mm=1 ⊂ Σh and a corresponding interpolation

basis ξM := {ξm}Mm=1 ⊂ W with τEIm′ [ξm] = δm,m′ for
1 ≤ m,m′ ≤M . Assuming the existence of these sets, the
discrete operators can be approximated by an empirical
interpolant IM [Lh(µ)] of the form

IM [Lh(µ)] [vh] :=
M∑
m=1

τEI
m (Lh(µ) [vh]) ξm ≈ Lh(µ) [vh] (15)

for all vh ∈ Ŵ. The sum is assumed to contain few terms,
i.e. M � H.

An efficient evaluation of the functionals τEIm (Lh(µ) [vh])
requires it to depend on few basis functions only. This fact
inspires the following definition.

Definition 3.1. (H-independent DOF dependence). A dis-

crete operator Lh(µ) : Ŵ → W fulfills an H-independent
DOF dependence, if there exists a constant C � H in-
dependent of H such that for all τ ∈ Σh a restriction
operator

RCτ : Ŵ → Ŵ, vh =

V∑
i=1

τ̂i(vh)ψ̂i 7→
∑
j∈Iτ

τ̂j(vh)ψ̂j

exists that restricts the operator argument to |Iτ | ≤ C
degrees of freedom and the equation

τ (Lh(µ) [vh]) = τ
(
Lh(µ)

[
RCτ [vh]

])
still holds for all vh ∈ Ŵ.

Remark 3.2. In particular, finite element or finite volume
operators fulfill the H-independent DOF dependence, as a
point evaluation of an operator application only requires
data of the argument on neighbouring grid cells together
with geometric information of this subgrid.

Assuming this H-independence condition for a parame-
trized discrete operator, its empirical interpolant can be
evaluated efficiently, i.e. independent of the dimension H.

3.1 Basis generation

The generation process for the basis functions and interpo-
lations points works similarly to the algorithm described
in the original empirical interpolation paper Barrault et al.
(2004) in which point evaluations in so-called “magic
points” are used as interpolation DOFs after the basis
functions were selected. The main idea is a greedy algo-
rithm which iteratively enhances the reduced space with
new basis functions searched from a training set of suitable
operator evaluations. The selection of these basis functions
is controlled by minimizing the interpolation error over the
finite set Mtrain comprising tuples of operator arguments
and operator parameters. For the empirical interpolation
of the saturation operator Lsh, e.g., the training set com-
prises the snapshots{

sk,νh ,uk,νh

}
(k,ν)∈K



Algorithm 1 Greedy algorithm for EI basis generation

EI-greedy(Mtrain, εtol,Mmax )
M ←M0

repeat
for all (uh,µ) ∈Mtrain do

– Compute exact operator evaluation
vh ← Lh(µ)[uh]

on an argument uh.
– Compute interpolation coefficients

σM (uh) :=
(
σMj (uh)

)M
j=1
∈ RM

by solving the linear equation system
M∑
j=1

σMj (uh)τEIi [qj ] = τEIi [vh] , (16)

for i = 1, . . . ,M
– Compute the residual between vh and its

current interpolant.

rM (uh)← vh −
∑M
j=1 σ

M
j (uh)qj

end for
– Find operator evaluation vh maximizing

‖rM (uh)‖W over (uh,µ) ∈Mtrain.
– Find interpolation DOF maximizing the residual.

τEIM+1 ← arg supτ∈Σh
|τ(rM (µ))|

– Normalize to obtain a new basis function.
qM+1 ← (τEIM+1(rM ))−1 · rM
M ←M + 1

until maxµ∈Mtrain
‖rM (µ)‖W ≤ εtol or M > Mmax

return collateral reduced basis: (QM ,Σh)

with K := {(k, ν) ∈ {0, · · · ,K} × N+; ν ≤ νmax(k)} de-
noting the index set of all (intermediate) solution snap-
shots of the scheme from Definition 2.1. Here, we do not
need to attach parameters to the snapshots in the training
set, as the operator is not parametrized.

Algorithm 1 describes the basis generation strategy for
the empirical interpolation components. Instead of the
nodal basis ξM introduced above, this algorithm returns
an equivalent basis QM := {qm}Mm=1 with a different
structure, such that τEIm [qm] = 1 and τEIm′ [qm] = 0 for
all m′ > m. Unlike the nodal basis, QM is constructed
iteratively, such that QM−1 ⊂ QM and the basis functions’
maximum norm is bound by one ‖qm‖L∞(Ω) ≤ 1. Because

of this property, which makes computations numerically
more stable, we use the basis QM in our implementations.
The nodal basis ξM , however, is used in this article for
a simpler exposition of the empirical interpolation (15).
It can be efficiently constructed from QM , because of
the lower–triangular shape of the column matrix of basis
vectors qm,m = 1, . . . ,M .

Remark 3.3. We mention, that the loop over the training
set Mtrain which is necessary to find the worst approx-
imation parameters in Algorithm 1, can be executed in
parallel with hardly any communication costs. Here, only
the scalar results of the residual norms need to be com-
municated, such that the offline computation time can be
extremely improved by use of parallel hardware.

3.2 Empirical interpolation of Fréchet derivatives

Many solvers for numerical approximations of nonlinear
partial differential equations use the Newton method to

resolve the nonlinearities in the equation and therefore
depend on derivatives of discrete operators. It is easy to
observe that the Fréchet derivative can also be applied to
the empirical interpolant of an operator Lh(t,µ) as

D (IM [Lh(t,µ)|uh ]) [·] =
M∑
m=1

D
(
τEIm ◦ Lh(t,µ)|uh

)
[·] ξm. (17)

4. REDUCED BASIS SCHEME

In this section, we want to show how to reduce the Newton
scheme defined in Definition 2.1. We need reduced basis
spaces Ws,p

red ⊂ WTh and Wu
red ⊂ WEh spanned by reduced

bases Φ∗ := {ϕ∗n}
N∗
n=1 with ∗ = {s,u, ψ} and empirical

interpolation basis spaces ξs := {ξsm}
Ms

m=1, ξu := {ξum}
Mu

m=1

together with interpolation points T sM := {xsm}
Ms

m=1, Tu :=

{xum}
Mu

m=1 for the empirical operator interpolation of the
non–linear operators Lsh and Lu

h .

The reduced basis spaces can be obtained by a proper
orthogonal decomposition of the “snapshots” sk,ν ,uk,ν

and ψk,ν for all (k, ν) ∈ K, i.e. of the entire trajectory
of solution snapshots and the intermediate solutions gen-
erated by the Newton method.

The empirical interpolation data for the two operators
is obtained by the EI-greedy algorithm as described in
Section 3.

The numerical scheme in Definition 2.1 can then be
reduced by searching for reduced solutions ured :=(
skred,u

k
red, ψ

k
red

)
∈ Wred for which in each time in-

stance the residual of the reduced operator evaluation
Lred[sk+1

red ,u
k+1
red , ψ

k+1
red ] gets minimized. This operator is

defined like its high–dimensional counterpart in (14) where

the operators L{s,u,ψ}h are replaced by reduced surrogates
defined as

Lsred := Psred ◦ IMs [Lsh] , (18)

Lu
red := Pu

red ◦ IMu [Lu
h ] and (19)

Lψred := Pψred ◦ L
ψ
h (20)

with orhogonal projection operators Psred : Ws
h → Ws

red,

Pψred :Wψ
h →W

ψ
red and Pu

red :Wu
h →Wu

red.

4.1 Offline/Online decomposition

The reduced basis scheme is decomposable into a an offline
phase with computations depending on the high dimension
of the original function spaceWh and into an online phase
with memory efficient and fast reduced simulations. In
order to make this decomposition clear, we write down the
DOF-wise computations needed to evaluate the reduced
operator

Lred :Ws
red ×Wu

red ×W
ψ
red →W

s
red ×Wu

red ×W
ψ
red × R.

We introduce the DOF vectors

ak :=
(
akn
)Ns
n=1

,bk :=
(
bkn
)Nu

n=1
and ck :=

(
ckn
)Nψ
n=1

,

such that skred =
∑Ns
n=1 a

k
nϕ

s
n, ukred =

∑Nu

n=1 b
k
nϕ

u
n and

ψkred =
∑Nψ
n=1 c

k
nϕ

ψ
n . Then the n−th degree of freedom of a



Table 1. Costs of offline matrix computations

(I) (II) (III) (IV) (V)

O(NsMsH) O(NsH) O(MuNuH) O(NuNψH) O(NψH)

reduced operator evaluation
(
Lred

[
sk+1

red ,u
k+1, ψk+1

])
n

is
defined as

1

∆t

(
ak+1
n − akn

)
−

Ms∑
m=1

Lh[sk+1
red , ψ

k+1
red ](xsm)

∫
Ω

ξsmϕ
s
n︸ ︷︷ ︸

(I)

−
∫

Ω

q1ϕ
s
n︸ ︷︷ ︸

(II)

(21)

for n = 1, . . . , Ns,
Mu∑
m=1

Lred

[
sk+1

red , ψ
k+1
red

]
(xum)

∫
Ω

ξumϕ
u
n̂︸ ︷︷ ︸

(III)

−bk+1
n̂ (22)

for n = Ns + 1, . . . , Ns +Nu with n̂ := n−Ns,
Nu∑
i=1

bk+1
i 〈ϕu

i , [ϕ
ψ
n ]〉Wu

h︸ ︷︷ ︸
(IV )

−
∫

Ω

(q1 + q2)ϕψn︸ ︷︷ ︸
(V )

(23)

for n = Ns+Nu+1, . . . , Ns+Nu+Nψ with n̂ := n−Ns−Nu

and
Nψ∑
i=1

ck+1
i

∫
Ω

ϕψi (24)

for n = Ns + Nu + Nψ + 1. In equation (23), the jump
operator [·] : WTh → WEh , uh 7→ [uh] defined by [uh]σij :=
uh,i − uh,j for all σij ∈ S is used. It measures the jump of
a finite volume function on the mesh edges.

The integrals (I) − (V ) can be pre–computed during the
offline phase at the costs given in Table 4.1.

Then, a single reduced operator evaluation has complexity
O(NsMs+NuMu+NψNu) which is assumed to be signifi-
cantly more efficient than the detailed operator evaluation
(14) of complexity O(H). The same computations can be
conducted for the Jacobian matrix DLred. The costs for
the matrix assembly are the same, whereas the solution of
the linear equation system conducted in each Newton step
13 with the Jacobian on the left hand side has complexity
O((Ns + Nu + Nψ)3). The costs in the high–dimensional
scheme add up to O((H)3) here, in case of Gaussian
elimination or O(HNiter) for an iterative solver with a
maximum number of iterations Niter.

5. EXPERIMENTS

In our experiments with the reduced basis method for
the two–phase flow problem (1)-(3), we use similar data
functions like in Michel (2004):

kw(s) =
s3

12
, knw(s) =

(1− s)3

3
,

M(s) = kw(s) + knw(s), f(s) =
kw(s)

M(s)
and

pc(s) = −0.5

√
1− s
s

.

The source and sink terms (5) are given as characteristic
functions on circles B(x̂, r) :=

{
x ∈ R2| ‖x− x̂‖ ≤ r

}
by

(b)
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Fig. 1. Illustration of saturation concentration, and con-
tour plot of pressure field with velocity flux at time
instances (a) t = 0.25 and (b) t = 0.5. The snapshots
are reconstructed from a reduced simulation.

q = 10 1B((0.5,0.8),0.01) + 20 1B((0.2,0.2),0.01)

q = 30 1B((0.8,0.5),0.01)

and the injection constant c = 0.8. The initial saturation
is set to 0.5 on the entire domain Ω := [0, 1]2. The final
time T is set to 0.5.

Discretization For the finite volume discretization a rect-
angular mesh with 400 control volumes and a time step
length of ∆t = 0.01 is used. Solution snapshots recon-
structed from reduced simulations of the three unknowns
at t = 0.25 and t = 0.5 are depicted in Figure 1.

Reduced basis method After computing the trajectory of
solution snapshots with the scheme described in Definition
2.1, a POD is applied to compute the three reduced
bases Φs,Φu and Φψ. Discarding all POD modes with
eigenvectors less than 10−6, the resulting basis sizes are
Ns = 28, Nu = 72 and Nψ = 34.

The empirical interpolation basis and interpolation points
for the non–linear operators Lsh and Lu

h are derived with
the EI-greedy algorithm for εtol = 10−8 resulting in basis
sizes Ms = 387 and Mu = 386. The error convergence and
the selected interpolation points are illustrated in Figures
2+3. We observe that the EI-greedy chooses the DOFs
at different grid cells for the two operators resulting in
two substantially different subgrids. Table 2 illustrates the
reduced simulation computation time and the L2(Ω) error
between high dimensional and reduced discrete solutions
for saturation and pressure. As the computation time of
a high dimensional simulation is about 52 seconds, the
computational gain is about 2.5. We observe that the
empirical interpolation basis is oversized, as a reduced
simulation with basis sizes (Ms,Mu) = (75, 125) achieves
similarly good results as with all basis vectors.

6. CONCLUSION AND FURTHER WORK

This article shows the applicability of the reduced basis
framework as introduced in Drohmann et al. (2010) to
a non–linear system of PDEs modelling two–phase flow



Table 2. Error and timings of reduced simula-
tions with different basis sizes.

(Ns, Nu, Nψ) (Ms,Mu) ‖sh − sred‖ ‖ψh − ψred‖ time

(28,72,34) (387,386) 6.2 · 10−5 4.11 · 10−4 30.15
(28,72,34) (75,75) 1.03 · 10−4 2.11 · 10−3 21.56
(28,72,34) (75,125) 7.59 · 10−5 8.69 · 10−4 20.61
(23,58,28) (75,125) 2.47 · 10−4 2.55 · 10−3 18.24

0 100 200 300

10−6

10−4

10−2

100

Basis size: M

‖L
h
−
I M

[L
h

]‖

Lsh
Lu
h

Fig. 2. Illustration of error convergence of EI-greedy
algorithm for operators Lsh and Lu

h .

Fig. 3. Illustration of selected interpolation DOFs for
operators Lsh (control volumes) and Lu

h (fluxes over
edges). Darker shades of marked control volumes and
longer arrows represent earlier selected DOFs.

in a porous medium. Reduced basis spaces are generated
independently for the three physical variables in this
scheme and the two identified non–linear operators.

So far, the computations conducted for this presentation
must be labelled as “toy sized” and we did not consider
a parametrization of the problem. Therefor, an increase
of size in spatial and parameter domain are the canonical
steps to address in the future. This requires the develop-
ment of efficient a posteriori error estimators and the use
of more sophisticated algorithms to construct the reduced
basis spaces for the three physical variables like the POD-
greedy or the PODEI-greedy algorithm in Drohmann
et al. (2010) or adaptive reduced basis construction ap-
proaches as in Haasdonk et al. (2011) and Eftang et al.
(2011). In this context, it is also worthwhile to study the
effects of the Babuska–Brezzi condition on the stability of
the pressure and velocity equations like it was done, e.g.
in Rozza and Veroy (2007).
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